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From the Takagi-Taupin equations for two-beam cases, the exact wave fields for a spherical incident 
wave are obtained in the Laue case for a crystal having a constant strain gradient. Absorption is taken 
into account. Both direct and Bragg-reflected waves are essentially expressed in terms of confluent hyper- 
geometric functions. Their characters depend on strain gradient, structure factor and crystal thickness. 
The wave fields tend to those obtained by Eikonal theory as the strain gradient decreases. For an ex- 
tremely large strain gradient, the wave fields reduce to those predicted by the kinematical theory. 

1. Introduction 

The wave-optical theories of crystal diffraction for 
distorted crystals have been developed along two lines 
of consideration. One is Eikonal theory (Kato, 1963, 
1964a, Kambe, 1965, 1968) which is based on the 
concept of rays. The other theory is purely wave- 
optical and the master equations were presented by 
Takagi (1962, 1969) and Taupin (1964). The Eikonal 
theory is to be derived from the Takagi-Taupin 
equations by using a kind of W - K - B  approximation. 

So far, the Takagi-Taupin equations have not been 
exactly solved for any continuously distorted crystal. 
On the other hand, the analytical solution within the 
framework of Eikonal theory is available for the Laue 
case of a constant strain gradient (Kato, 1964b; Kato 
& Ando, 1966). In this paper, the authors present an 
analytical solution of the Takagi-Taupin equations 
for the case mentioned above without any approxima- 
tion. The solution is represented in a form of Laplace 
integral, from which two kinds of asymptotic ex- 
pansions are derived. They are useful for comparison 
with the kinematical and Eikonal theories. The solu- 
tion is also represented essentially in terms of confluent 
hypergeometric functions. 

The wave field obtained tends to the results of the 
kinematical theory as the strain gradient increases, and 
tends to the solution of the Eikonal theory with decreas- 
ing strain gradient unless the crystal is extremely 
thin. From this analysis, the applicability of Eikonal 
theory can be elucidated in this particular case. 

2. The wave equations and the boundary conditions 

We shall consider the crystal wave field in the form 

D(r)= Do(r) exp i~0 .  r )+  Dg(r ) exp i d a .  r) (1) 

where the wave vectors k,0 and k9 satisfy the relations 

= ~ =  KZ(1 + Zo) (2a) 
and 

[g = ko + 2n~, (2b) 

K and Z0 being 2z~ times the wave number in vacuum 
and the mean polarizability of the crystal respectively. 
The reciprocal-lattice vector f~ is referred to a perfect 
crystal. 

When the crystal is distorted by the displacement 
vector u at the position r, the spatial variations of the 
amplitudes Do and Dg are described by equations of the 
Takagi-Taupin type of the form (Kato, 1973) 

c3Do 1 
iK -1 ~ + ~ Cz_oDo exp [2rci(t~. u) ]=0 (3a)* 

3Dg 1 
iK-~ ~s--- 7 +-2- Cx°D°exp [-2rci(~.  u)]=O (3b)* 

where (Xg,Z-o) are the Fourier components of the 
polarizability 2' of the crystal and C is the X-ray 
polarization factor which is conventionally used. The 
coordinate variables So and s o are referred to an oblique 
coordinate system having the directions of ~,0 and kg- 
The assumptions in deriving equations (3) are discussed 
in the previous papers (Takagi, 1962, 1969; Taupin, 
1964; Kato,1973). 

In this paper we shall consider the case in which a 
spherical wave of the form 

Eo 
E ( r ) -  4zrlr-r0l exp iKlr-r0[  (4) 

falls on a crystal through a sufficiently narrow slit. 
Under the approximation used in the spherical wave 
theory, the wave field which is effective in crystal dif- 
fraction can be written on the entrance surface re as 

E(re)=A6(sg) (5) 

where O(so) is the Dirac delta function and A is given by 

A = 4re sin 20B \--KL-I exp i KL+ -4- ' L = Irol 
(6) 

* Similar but slightly different equations have been proposed 
by Takagi (1969). 
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with the origin of the coordinates taken at the entrance 
point. The justification is given at least for the case of 
perfect crystals (Saka, Katagawa & Kato, 1973). The 
mathematical arguments will be reported in a separate 
paper. In any case, assuming the incident wave (5) 
on the entrance surface, we shall solve the Takagi- 
Taupin equations under the boundary conditions 

Do(O, so)=Ag(so) s o > - e  (7a) 

Do(so , -e )=O so>O (7b) 

on the edges of the Borrmann fan. 

3. The case of a constant strain gradient 
In this section, we shall treat a special case where the 
displacement has the form 

2n(l~. u)=fSoS o • (8) 

Obviously, the force parameter which characterizes dif- 
fraction phenomena in the Eikonal theory (Kato, 
1964a), 

2n c32 
F =  (~g. u), (9) 

sin 20n OSoOSo 

turns out to be the constantf]sin 20n. 
Let us introduce the Laplace transform of the wave 

field Do 

V(so,p)= I °° Do(so, so) exp ( -pso)ds  o . (10) 
d-- 8 

By the inversion theorem (Sneddon, 1951), the wave 
field Do can be represented as 

1 l ~+i°° V(so,p) exp (pso)d p (11) D°(s°'s°)= ~ v~,-ioo 

where 7 is a real constant larger than the abscissa of 
convergence which turns out to be zero after the 
functional form of V(so,p) is determined. Substituting 
equation (11) into equation (3a), one can write the 
wave field D o as 

c(- ,_-- ~ N X  C(+ ) 

g 

Fig. 1. The integral paths in the plane of p = ~ + it/. 

2i 1 
D°(s°'s°)= ~ z ~ ' ' "  exp (-/fs0so) 

2hi 

I 
~-kioo 0 

x - -  V(so,p) exp (pso)d p . (12) 
¢/~,+ioo OS0 

By the use of equations (10) and (12), the Laplace 
transform of equation (3b) multiplied by exp (ifsoso) 
gives 

0 1 
( p -  ifso) -y£. V(so,p) + K2C2Zoz_oV(so,p) 

v 

i 
= ~ KCz_oDo(so,--e) .  (13) 

The right-hand side, however, is zero by virtue of the 
boundary condition (7b). Equation (13), therefore, can 
be solved easily as 

where 

/ VSo p -  \ tT 

V(so,p) = v(o ,p )  ! / \ p ! 
(14) 

K2C2xaZ_a 
a =  (15) 

4/f 

By the use of the boundary condition (7a) and equation 
(10), the integral constant V(O,p) is determined as 

V(O,p) = A g(so) exp ( -pso)ds  o = A .  (16) 
~ 8  

The wave field Do can be written by substituting the 
expression (14) together with equation (16) into 
equation (11) 

A ~r+ioo (1 - tfs°/~exp (psg)dp. (17a) 
D°(s°'s°) = ~ d~-ioo p ! 

From equations (12) and (13), the wave field D o can be 
obtained as 

Do (s0,so)_ A KCzo exp(-  ifsoso) 
2zc 2 

" + ' ° ° 1  ~ ) ~  
× lr-,oo p-/fs0 (1- exp (pso)dp. (17b) 

Since V(so,p) has singularities at the origin and a 
pure imaginary ifso in the p-plane, it turns out that the 
abscissa of convergence is zero. In addition, when so 
is negative, the contour integral along the path C(+)  
shown in Fig. 1 is zero. Since the integral path com- 
posed of L(y) and C(+)  includes no singular point, 
the integrals in equations (17)become zero, so that 
Do(so, so) always satisfies the boundary condition (Tb). 
On the other hand, in the region of interest (s o > 0) the 
contour integral along the path C ( - )  is zero. Since the 
integral path L(7)+ C ( - )  encloses singular points, the 
integral on L(7) may take on some value. The integral 
path of equations (17) can be modified to any closed 
curve containing the singular points. 

A C 30A - 10" 
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If the variable p is replaced by it + ~, the expressions 
(17) can be written also in the form of the Fourier 
integrals 

A (1 f s o ) ~  
D°(s°'s°)= -2-~ exp (ys°) I~_~ t -  i, 

x exp (itsa)dt (18a) 

Do(so, so)= A KCzo exp (yso-ifSoSo) 
• 2re 2 

1 (1 fso ] ~ exp (itsg)dt (18b) 

where ~ is an arbitrary positive number. 
For performing the integrals in equations (17), the 

following Laurent series are useful 

1 /fso ]~ - --p--/ 
oo F(n+ l - a )  ( _ ~ )  ,,+t 

= 1 +  ~. F( - a) (n + l) ! 
n = 0  

(19a) 

where F(a,c,z) is a confluent hypergeometric func- 
tion.* 

As a special case, it is worth considering the perfect 
crystal wheref tends to zero, namely la[ tends to infini- 
ty. Recalling the relation 

lim 1-'(n+ 1 - a )  (/f)"=lim ( n - a )  ( n -  l - a )  
y-.o F(1 - a )  s-.o 

. . . ( 1 - a )  ( i f )n=( -1 )n (  KZC2--:°Z-°) n , 

one obtains 

(23) 

1 AKzCZxoz_oSo ~ ( -  1)" D°(s° 's°)=- -4 ,,=o n!(n+ 1)! 

x .KZC oZ-o SoSo = _ 2 AKICII/zoZ_o 

x ~ J,(KlclzV~oxfogV~oso) (24a) 

1 ( 1 _  tfs°/~ = ~ F ( n + l - a ) ( i f s o ) "  
p- i fSo  P / ,,=o-- F(1-a)n!  p"+~" 

(19b) 

In the integration in equation (17a), the first term of 
the right-hand side of equation (19a) gives us AO(so) 
which is the non-diffracted part of the crystal wave. 
Since we are interested in the region s o > 0, this term is 
omitted in the following discussion, unless specifically 
stated. Actually, the series (19) converge uniformly 
on a circle with the centre at the origin, provided that 
the radius is larger than ITs01. If the relations are 
recalled 

1 f r+~°° exp(pso)dp= 1 f exp(pso) 
2~i ~_~o~ p"+~ ~ p . ; r  dp 

_ so" (so > O) 
n! 

(20) 

the wave fields Do and D o are represented by 

oo r (n  + 1 - a )  (ifsoso) . 
Do(so, so)=iAfso .=o ~ F(-a)n!(n+ 1)t (21a) 

1 AK2CZzoZ_osoF( 1 _ a, 2, ifsoso) 
4 

(21b)* 

i co ( -1 ) "  K z c  Z-o SoSo 
Do(so, So) = ~ AKCzo.~=o -~!)Y -- 

= i AKCZoJo(KICIz~-~  sV~os~) (24b) 
2 

The results are nothing else but those obtained from 
the spherical wave theory for perfect crystals (Kato, 
1968). 

4. Comparison with the Eikonal theory 

It is clear that the Eikonal theory is valid only when 
the observation point is sufficiently far from the edge 
of the Borrman fan, even when the crystal is perfect. 
In addition, the theory is expected to be correct in 
the case of small strain gradient. For this reason, we 
shall obtain the asymptotic expansion of equations (17) 
by the method of steepest descent for the cases of 
large Isosol 1/z and lal. 

Equations (17) have the form 

l 
y + i o o  

D~,= Ah(p) exp [~(p)]@ (h=O and g) (25) 
v y - -  ioo  

where the amplitude A~,(p) and the phase ~0(p)are 
given by 

A 
Ao(p)-  2rci (26a) 

i AKCzo exp (-ifsos o) Do(so, so)= -~ 

oo V(n+ l - a )  (ifsoso) . 
× .=0 ~ r ( 1 - a )  (n0 2 

i 
= -~ AKCzoF(a, 1, - ifSoS o) 

(22a) 

(22b)* 

* Here, the notation 
F(c) ~ F(n+a) z" 

F(a,c,z)= F(a) ,=0 F(n+c) n! 

and Kummer's first formula 
F(a, c, z) = eZF(c- a, c, - z) 

are employed. The function F is identical to 1FI in the text- 
book of Jeffereys & Jeffereys (1956). 



T. KATAGAWA AND N. KATO 833 

A KCxo 1 
A°(P)- 2re 2 exp ( -  ifsoso) - -  (26b) p-ifso 

~o(p)=psg+0. log ( 1 -  - . (27) 

According to the standard procedure, the first term 
of the expansion is given by 

Dh-- ~ A~(p J) exp ~0(pJ). (28) 

The summation is taken over the relevant saddle 
points specified by (j), which are determined by the 
relation 

1 K2C2)(o)(,_ O 
to'(p)=so+ -~ pE_ifsop s0=0. (29) 

The saddle points are given by 

i 
pCO= 2 {rio + ]/(fs0) 2 + K2C2xoX-o(So/So)} (30) 

where the upper and the lower signs correspond to 
(j) = 1 and 2 respectively. The function ~0"(p) is given 
by 

1 2p- i f so  
09"(P) . . . . .  ~ K2C2zo)(-o (p2_/fsop)2 s O . (31) 

Hence, substituting from (30) into (28), one obtains 

Do~-ACo~)exp[i((oa+4)] + ACo2)exp [ - i  (qTa + 4-) ] 

(32a) 

Do ~ACol)exp [i ( ~ 0 a - 4 ) ]  + ACo2'exp 

where ACJ ), ACJ ) and ~PA are given by 
(32b) 

i A KlCl~zoZ_oexp(~fsoso ACol)= A(o2)_ , _ _  
V2zc 

]/So[ 1 1 --1/4 1 (33a) 
x j / ~  \--~- + --ST ) N 

ACo J)=i A KCzo i 1 1 -1/4 exp (- 

x + ~ __ (33b) 

1 V~C-2zg~,_gSoSg "q- (fSoS#)2 

K2C2x°X-° sinh -1 f s°s° (34) 
+ ~ KIC~ XoX-o 

with the notations 

N=KICIgz~- V~os; (35a) 
S =  K2C2zoZ_o/f . (35b) 

The details of calculation are explained in the Ap- 
pendix. The results are identical with those obtained 
previously from the Eikonal theory [see equations 
(44a, b) and (39a) of Kato's 1964b paper]. The imagi- 
nary part of Eikonal [equation (40a) of the above 
paper] is automatically included in equation (34). 
Incidentally, equation (29) gives a relation between 
so and s o for the wave specified by p. The relation is 
identical with the expression for the trajectory of a 
hyperbolic form derived from Fermat's principle. 

The second terms of the asymptotic expansion are 
discussed in the Appendix. The results are summarized 
as follows: 

The second term of O wave; 

ACol)B~l)exp[i(~oa+ 4)]+ACoZ)B(oZ)exp[-i(~oa+ 4}] ; 

(36a) 
The second term of the G wave; 

A°)n(~) exp [i (~oa--4) ]--A¢2)nt2) exp [--i (~oA-- 4 )  ] O ~ g  "~g ~ g  

(36b) 
where B~d ) and BcJ ) are given by 

( 1  1 ) - 3 / 2 (  3 1 1 ) 
BOo "0 = + i - ~  + ~ -  ~ + 2N2----Sq + 

(37a) 
( 1 ) - 3 ' 2 (  1 

BCo s)= -T-i .1 + ff£ 8N 4 

"+ 2N2S ~ f  -a t- $2 3~ 4- . (37b) 

5. The approximated formula for a large Ifsosgl 
In the present case, the following asymptotic expan- 
sions of the confluent hypergeometric functions are 
available, (Jeffereys & Jeffereys, 1956): 

F(1 -a,2,ifsoso) 
(VSoSo) exp f 

= (ifsoso) -'~-' ] 1 + - -  r (1-0 . )  

a(1 +a)  (1 +0.) (2+0.) + + . . .  
(ifsoso) 2 

1 { 
F(1 +0.) (-ifs°s°)'~-x 1-  

( -  0.) (1 - a) (1 - a) ( 2 -  o') 

F(a, 1, - ifsoso) 

2(ifSoSo) 2 

1 { 
- r ( 1 - 0 . )  qfs°s°)-" 1 

0.2(1 + 0") 2 } 

+ 2(ifsosg)2 +""  

0-2 
+ 

/fsos~ 

o'(1 +0.) 
ifsoso 

} 
(-0.)(1-G) 

/fs0sq 

~ ' ' "  / (38a) 
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exp ( - ifsoso) { (1 - a) 2 
F(a) ( - i f s o s y  -~ 1 ifsoso 

+ (1 -- °')z(2- or) z } 
2(/fsosg)Z - . . . .  (38b) 

As Ifl  increases, equation (38a)tends to zero. The 
O wave (17a), therefore, includes only the non-dif- 
fracted part 

Do(so, So)= A6(so). (39a) 

Since equation (38b) tends to unity, one obtains from 
equation (22b) 

i 
Do(so, So)= -~ AKCzo .  (39b) 

This is nothing but the kinematically diffracted wave 
from the O wave having the form of equation (39a). 
The results are reasonable, although the Takagi- 
Taupin equation would be invalid in the case of 
extremely heavy distortions. 

6. Discuss ion  

1. Remarks on the general case o f  constant force 
parameter F 

The application of the theory so far developed is 
not limited to the special distortion given by equation 
(8). In fact, if the displacement vector u has the more 
general form 

2~z(~. u)=fSoS o + g(So) + h(so) (40) 

where g(so) and h(so) are arbitrary functions, one can 
show that the wave fields 

130 = Do exp [ih(so) - ih(0)] (41a) 

D o = O o exp [ -  ig(so) - ih(0)] (41 b) 

satisfy the differential equations (3) for the phase 
2zc(~. u) given by equation (40). The boundary condi- 
tions (7) also are automatically satisfied, since the 
additional phase factor in equation (41a) is unity at 
s o = 0, only where Do takes a particular value. For this 
reason, the present results can be used for physically 
important cases such as the homogeneously bending 
crystal and the crystals having a homogeneous tem- 
perature gradient (Hart, 1966). 

2. Remarks on the boundary conditions 
The boundary conditions (7) yield the correct solu- 

tion only in the region specified by So > 0 and s o > 0, 
namely in the Borrmann fan. For finding the solution 
over the whole crystal, it is reasonable to take boun- 
dary conditions 

D0(0,so) = A0(so) - e o < s  o <co (42a) 

Do(s o, - e) = 0 So > 0 (42b) 

Do(so, + e ) = 0  s 0 < 0 .  (42e) 

The solution under these conditions is obtained by a 
similar procedure to that described in §3, namely 
bilateral Laplace transform. Actually, it has the same 
form as equations (17). In this case, however, the 
constant ), must be taken either positive or negative 
according to whether So > 0 or So < 0. The solution 
takes an appreciable value in the region SoSo> 0 and 
zero in the region specified by SoSg < 0. In the Laue 
case the crystal surface always lies in the latter 
region, so that the solution takes on a value 
only within the Borrmann fan in the crystal. The 
waves in the triangular fan specified by s0<0 and 
so<0 are regarded as those which would be con- 
nected to the wave fields in the real Borrmann fan, 
if the crystal was hypothetically extended to whole 
space. 

3. The applicable range o f  Eikonal theory 
Since the expressions (32) are the asymptotic ex- 

pansion of the rigorous solution, strictly speaking, the 
remainders must be calculated for the estimation of 
errors in taking only the first term, which actually 
gives the result of Eikonal theory. Here, however, the 
applicability of the latter theory is examined by put- 
ting a critical value Q on the ratio between the main 
term and the terms of the next approximation in the 
expansion series, namely on IBCJ) I for the O wave and 
[zu)nu)/A<l) or ~u)~u)~Au) for the G wave, depend- , = g = . ,  g i ~ .,  g I ,CX g . u  O I - , ' z  2 

ing on either IA~'I > IA~2)I or IACo~)l < IACo2)l. The effect 
of absorption, Im (ZoZ-o), is neglected in the following 
arguments. 

First the case o f f >  0(IACoa)l _> [ACoZ)[) is discussed; the 
critical conditions must be 

[B~I)I < Q and (2) (2) (I)I IA o B o /A~ , < Q (43a, b) 

for the Bragg-reflected waves. On the other hand, the 
condition for the direct wave is simply 

In~0x)l = In~0z)l < Q (44) 

because IA~ol)[ is always identical to [AC0Z)[. The numeri- 
cal results of the critical conditions for the case Q =3~ 
are illustrated in Fig. 2, in which the hatched region is 
the applicable range of the Eikonal theory. From 
equations (33) and (37), it is obvious that the critical 
curve for other figures of Q have the similar form, 
the change being simply a matter of scaling. 

The crystal must be thicker than a certain limit. 
This situation is not new because even in the perfect 
crystal Eikonal theory holds only when the wave 
propagates a certain distance from the entrance point. 
As another criterion, obviously, the strain gradient 
must be less than a critical value. The significant 
thing is that the two critical conditions can be regarded 
as nearly independent because the applicable range of 
Eikonal theory for each case of the direct and the 
Bragg-reflected waves is roughly approximated by a 
rectangular region in Fig. 2. 
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In the case o f f < 0  where IAoml_> IAo")l and IA~ol)l= 
IA~o2)l, the critical conditions are given by interchanging 
the indices (1) and (2) in equations (43) and (44). 
Owing to the symmetrical characters of the expressions 
(33) and (37), the condition for f < 0  is identical with 
the criteria for f >  0. 

When the crystal is sufficiently thick, the applicabil- 
ity of the Eikonal theory can be more concretely 
discussed on the basis of the asymptotic formula 
(38b). Here, only G waves are discussed in detail. 
As Isosol ~/'- is increased, equation (22b) tends to the 
form 

(~fsos~)-" i AKCzo . (45a) D°(s°'s°)~ -2 /-'(1 - a) 

For a small but finite f,  therefore, it turns out to be 

i AKC)(,~ (ifs°s°)-" . (45b) 
Do(so, so) ~- -~ ~ _  2na(_a)- ,e  ~ 

In fact, this expression is nothing else but the expres- 
sion of the Eikonal theory, namely equation (32b) 
combined with equations (33b) and (34) for a suffi- 
ciently large Is0sg]. Therefore, the relative error of the 
intensity in using equation (45b) instead of equation 
(45a) which is valid for a large Ifsosg[ is 

E-~ 1(45b)lZ-l(45a)12 I(-a)~e-~lZ 
= I F ( 1 - a ) 1 2 - 1 .  

1(45a)1 z 2nlcrl 
(46a) 

For non-absorbing cases where a is a pure imaginary, 
one can see 

1 

0"3 1 

G2 

0"2 

0"1 

0"1 1 

Fig. 2. The applicable ranges of the direct and the Bragg- 
reflected waves in the Eikonal theory. The curves G1, G2 
and O correspond to equations (43a), (43b) and (44), respec- 
tively for Q = ~-~. The parameters N and S are defined by 
equations (35). 

1 
E =  . (46b)* 

exp (2 ISI)-I 
In the case of bent crystals and of the symmetrical 

Laue, the parameter IsI has the form 

4n2aR 
[SI -  A02 (47) 

where A0 is the fringe spacing along the net plane in 
the perfect crystal, a and R are the spacing and the 
radius of curvature of the net plane respectively. If  
the value (4aR/A~) is about unity, the Eikonal theory 
is practically correct. This form of criterion has been 
suggested by Kato (1974) based on a naive wave- 
optical consideration. Taking reasonable figures A0= 
50/tm, a =  1 A and R=2m, the relative error is esti- 
mated to be 0.7 %. 

APPENDIX 

The mathematical principles in deriving the asymptotic 
expansion of § 4 

The method discussed in this Appendix is nothing 
else but the steepest-descent method. The details can 
be obtained from Jeffereys & Jeffereys (1956). 

Equation (25) can be rewritten in the form 

1 
Dh=exp [~O(po)] lAb(p)exp (-- ~- (2) dp d~' (A-l) 

by letting 

1 (2 (A-Z) ~(p)=~o(po)- -2- 

in the vicinity of each saddle point Po. In our problem 
P0 stands for either one of ptl) and pt2). With the use 
of the power series 

1 L,,(O)~. 2 + dp - L(~)= L(O) + L'(O)~ + -~ . . .  Ah(p) --d~ 
(A-3) 

equation (A-l) can be written in the asymptotic ex- 
pansion 

1 d 2 

* Use the relations 

I(- a)- ~12 = exp ( - nlal) 
lexp ( -  a)l z = 1 
IF(1 - a)l 2 = nlal/sinh ~lcrl 

for a pure imaginary value of a. 



836 W A V E  F I E L D S  F O R  A C R Y S T A L  W I T H  A C O N S T A N T  S T R A I N  G R A D I E N T  

The first term in the braces is easily calculated as 
follows. By the differentiation of equation (A-2), one 
gets 

d( 2 ~o(p)=~o"(p) ~ +~o'(p) d~-- T = -  . 

Since ¢p'(p) is zero at the point p =P0,  one obtains 

(-dd~)p=vo = [[--~" 1 ~ 1 1 ' 2 ~  (Po) J (A-6)* 

By the use of this relation, the first term of (A-4) gives 
equation (28). 

The second term can be calculated with similar 
procedures. By the differential manipulation, one gets 

3 

d( 2 

dp d2p d~p 
+3A~(p) d( ~ (2  +Ah(p) -d~" (A-7) 

The derivatives (d2p/d(Z)v=vo and (d3p/d~'3)p=p0 can be 
successively determined from the relations derived by 
differentiating equation (A-5). Inserting these into 
(A-7), one obtains 

* As to the arguments on the phase angle of the expression 
[ ]1/2, see Jeffereys & Jeffereys (1956), p. 505. 

[~d~2-~ - (~4(p)~-~)]p=po ~- l - (  1/-)1/2 [ Ail 
A~0'3~ 5Ah(~0'3') 2 _Ah~0(4) l } 

+ (~0") 2 12((0") 3 + 4((p;~J v=po (A-8) 

where ¢p(3) and ~o (4) imply d3~p/dp 3 and d4~/dp 4 respective- 
ly. With this result, the second term of (A-4) gives 
equations (34). 
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The value of the residual R., = ((11-/2)2)/(I~), where/1 and/2 are the intensities of reflexion for two 
unrelated structures having the same symmetry and containing the same atoms, has the value 
1 - S4/(2X 2-..,r4) for non-centrosymmetric structures and ~ -  2Z4/3(X 2-  24) for centrosymmetric; the 
corresponding values for R1 = ((F1 - F2) 2)/(F 2) are approximately 2(1 - n/4) _~ 0.43 and 2(1 - 2/n) _ 0"73. 
More complex expressions are derived for hyper- and sesquisymmetric structures. If a residual with a 
scaling factor, such as $2 = ((11- EI2)Z)/(l~), is used, and the scaling factor E is refined by least-squares, 
the value of E obtained is about ½ or ½, instead of the true value unity. 

Introduction 

Lenstra (1974) has considered the values of the residual 

R2_ E(11-I2)2 
E l~ (1) 

((11--12) 2 ) 
- (ix2) , (2) 

where, in Lenstra's application, lx represents the inten- 

sity of the hkl reflexion from a correct structure and 12 
represents the corresponding intensity calculated for a 
structure that is incomplete or in some way incorrect. 
Wilson (1969) had earlier considered the case in which 
the structures differed only through the misplacement 
of a single atom, and still earlier (Wilson, 1950) the 
case where the structures were entirely unrelated, ex- 
cept that they consisted of the same atoms and had the 
same symmetry; in this first paper the less convenient 


